

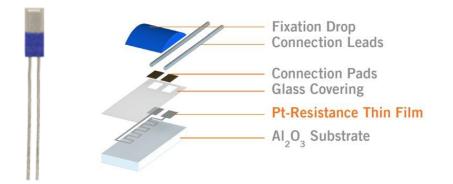
HOW TO CHOOSE THE RIGHT TEMPERATURE SENSOR FOR YOUR APPLICATION

B. Gliniecki, C. Clemen

OUR HERAEUS NEXENSOS EXPERTS

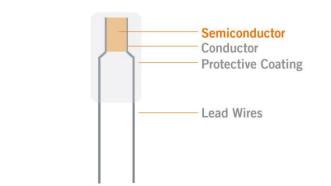
MRS. CHARLOTTE CLEMEN APPLICATION ENGINEER

MR. BOB GLINIECKI TECHNICAL SOLUTION MANAGER


AGENDA.

THEORETICAL OVERVIEW

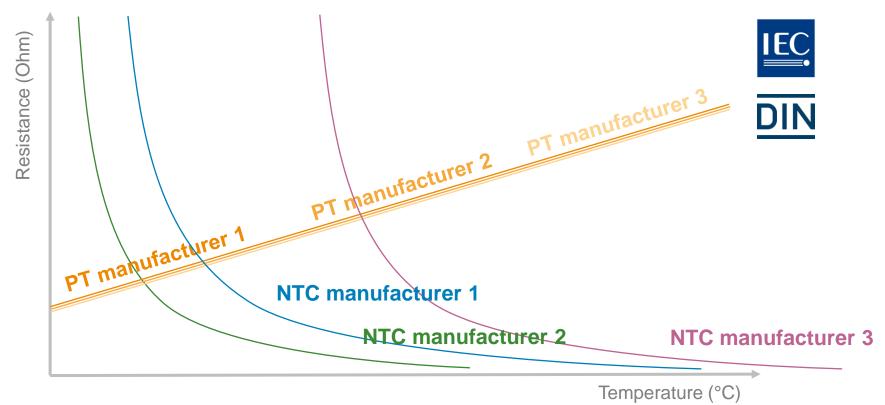
APPLICATION DEEP DIVE


- BODY TEMPERATURE MONITORING
- E-MOTOR
- HEAT METERING
- EXHAUST GAS TREATMENT
- INDUSTRIAL CLOTHING IRON

THEORETICAL OVERVIEW

PTC – Positive Temperature Coefficient Pt RTD – Platinum Resistance Temperature Detector

- Our sensors are based on thin film technology
- Typical configurations: Elements with lead wires, SMD types, SOT223, TO92


NTC thermistor – Negative Temperature Coefficient

- Bulk resistor based on semiconductor ceramics
- Typical configurations: Elements with lead wires, SMD types, diode package

THEORETICAL OVERVIEW

- PT
- Positive Temperature Coefficient
 Typical resistance values: 100, 500, 1000 ohm (@ 0 °C)
- Linear characteristics (TCR 3850 ppm/K)
- Typical operating temp. range: -196 °C to +1000 °C

- **NTC** Negative Temperature Coefficient
 - Typical resistance values: 2252 ohms and higher (@ +25 °C)
 - Non-linear characteristics
 - Typical operating temp. range: -100 °C to +300 °C

TEMPERATURE SENSING APPLICATIONS

BODY TEMPERATURE MONITORING

E-MOTOR

HEAT-METERING

INDUSTRIAL CLOTHING IRON

EXHAUST GAS TREATMENT

NTC THERMISTOR APPLICATION: PATIENT MONITORING

APPLICATION CONDITIONS

Narrow Temp. Range From +32 °C to +42 °C.

Small Sensor Footprint To minimize patient discomfort.

Relatively Long Lead Lengths 1-2 meters of small diameter wire.

Precise Temp. Measurement Small changes in temperature & trending can have large impact on patient.

Interchangeability

Ability to change sensor without recalibration is essential.

Fast Response Time

Some conditions cause rapid increase in body temp. that must be addressed immediately.

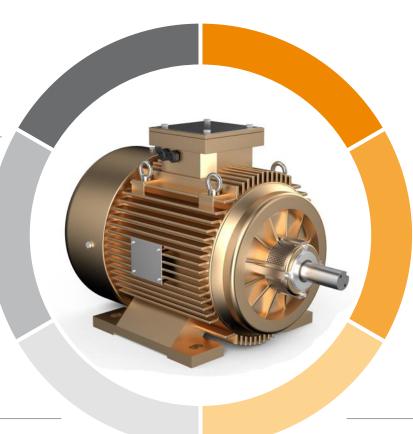
 (\mathcal{E})

Heraeus Nexensos | Webinar | Pt RTD or NTC

PATIENT MONITORING: PRECISION TEMPERATURE MEASUREMENT

Narrow operating temperature range °C KΩ **Resistance vs. Temperature** • +32 °C to +42 °C 8000 32 7.402 Large change in resistance over a short 7000 33 7.097 temperature range, but non-linear, even over a narrow temperature range: 6000 34 6.807 • $\Delta R_{32 \text{ to } 33 \text{ °C}} = 305 \Omega / ^{\circ}C$ Resistance D 3000 3000 35 6.530 • $\Delta R_{41 \text{ to } 42 \text{ °C}} = 191 \Omega / \circ C$ 36 6.266 37 6.014 38 5.774 2000 **High resolution / High precision** 39 5.544 Large ΔR combined with narrow operating 1000 temperature range enables high 40 5.325 0 precision/accuracy over specified range: 110 120 130 0 10 20 30 40 50 60 70 80 90 100 140 150 41 5.116 • ±0.05, ±0.10, & ±0.2 °C Temperature °C 42 4.916

E-MOTOR APPLICATION: PUSH YOUR PERFORMANCE LIMITS


APPLICATION CONDITIONS

Wide Temp. Range From -50 °C to +250 °C.

Hi-stress Temp. Cycling In everyday use.

High Currents and Voltages Up to 6 KV AC for 60 seconds as a

requirement for the temperature sensor.

REQUIREMENTS FOR TEMPERATURE MEASUREMENT

Precise Temp. Measurement To push the performance limits of an e-motor.

Reliable Temp. Control To protect e-motors over the complete life cycle.

Fast Response Time

To protect windings and insulation from overheating.

E-MOTOR APPLICATION: TEMPERATURE CYCLE TEST TEST DOCUMENTATION


TEST SETUP

SENSOR TYPES: WIRED 10X EACH

- Analysis before test: 0 °C, 100 °C, 150 °C, 175 °C, 210 °C
- Cycle shock test:
 - Temperature: warm 150 °C/ cold -50 °C
 - Dwell-time: warm 300 sec/ cold 300 sec
 - Numbers of cycles: 1000
 - Powered
- Analysis after test: 0 °C, 100 °C, 150 °C, 175 °C, 210 °C

- EC3032 (Pt1000 M222 F 0.3)
- NTC motor sensor

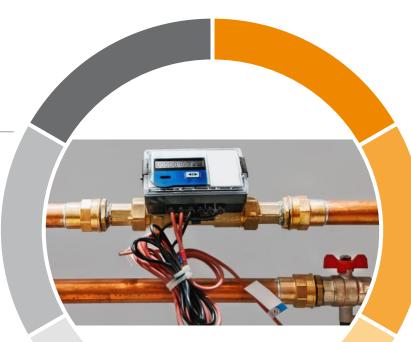
TEMPERATURE CYCLE TEST: HIGHER PRECISION AND LOWER DRIFT FOR PT RTDS E-MOTOR APPLICATION

PT accuracy becomes even more apparent at higher temperatures

Nexensos

HEAT METERING: CONTROL OF COSTS

APPLICATION CONDITIONS


Narrow Temp. Range 0 °C to +40 °C.

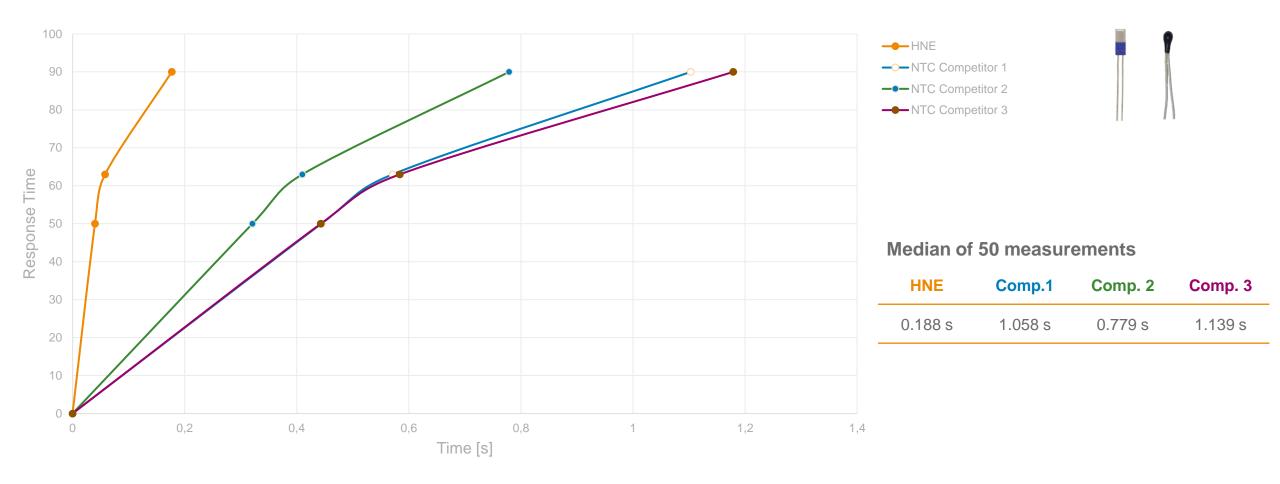
Large Scale Manufacturing Needs to be installed in most Euro households.

Interchangeability is necessary

New product versions must be compatible with previous generation systems.

REQUIREMENTS FOR TEMPERATURE MEASUREMENT

Good Long-Term Stability To ensure a long product lifetime.



Accurate Temp. Measurement To ensure fair energy costs.

Fast Response Time For traceable measurements.

FAST RESPONSE TIME FOR FAST REACTION TIMES

PCB SENSOR: SUPERIOR DESIGN FOR FAST RESPONSE TIME

Temperature range

-40 °C to +150 °C

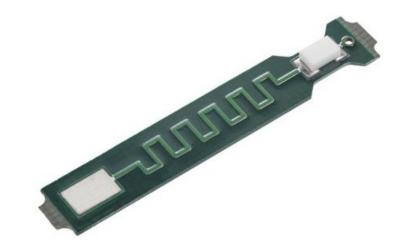
Standardized dimensions

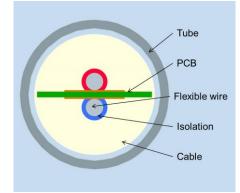
Ensures consistent part-to-part performance

Interchangeable

F 0.3 (±0.3 °C @ 0 °C) accuracy, available tolerance grouping to 0.1 °C between 0 °C and 100 °C

Easy probe assembly


Dimensions matched to housing, easy lead attachment, no electrical isolation required


Accurate temperature measurement

Ensures accurate energy consumption billing

Heat break design

Provides thermal isolation and fast response to temperature changes

INDUSTRIAL CLOTHING IRON: PREVENTION OF CLOTHING DAMAGE

APPLICATION CONDITIONS

Wide Temp. Range From +25 °C to +300 °C.

Excellent ironing results Optimized temperature control for best results.

\square

Short Heat-Up and Reaction Times Powerful heating requires fast response times.

REQUIREMENTS FOR TEMPERATURE MEASUREMENT

Good Drift Behavior Even after demanding temperature cycles.

Precise Temp. Measurement Max. +/- 2 °C deviation over the complete temperature range.

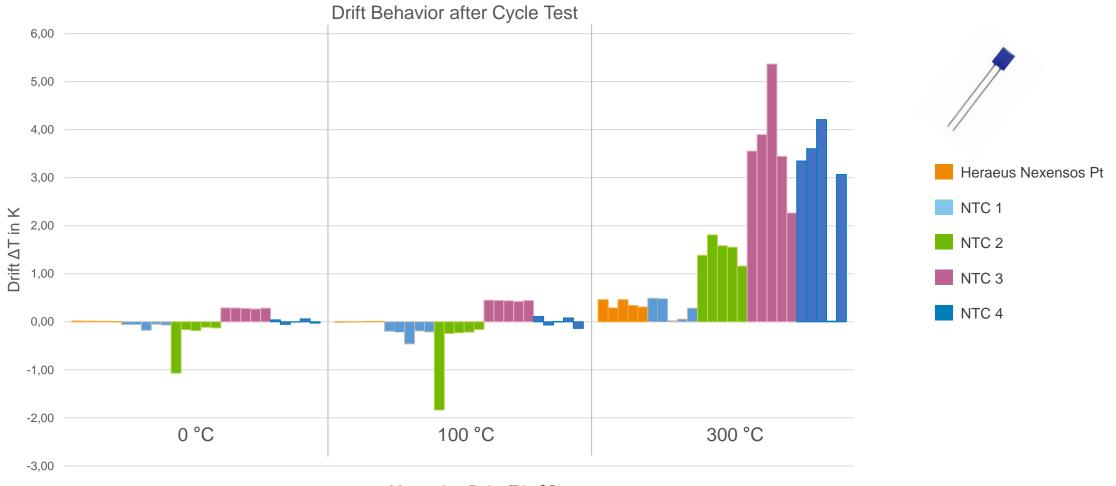
Ĩ

Reliable temperature control Over the complete life-cycle of the iron.

Heraeus Nexensos | Webinar | Pt RTD or NTC

Nexensos

INDUSTRIAL CLOTHING IRON: TEMPERATURE CYCLE TEST TEST DOCUMENTATION


TEST SETUP

SENSOR TYPES: WIRED 5X EACH

- Analysis before test: R0, R100, R300
- Cycle shock test:
 - Temperature: warm 300 °C/ cold room temperature
 - Dwell-time: warm 60 sec/ cold 30 sec
 - Numbers of cycles: 1000
 - Powered
- Analysis after test: R0, R100, R300

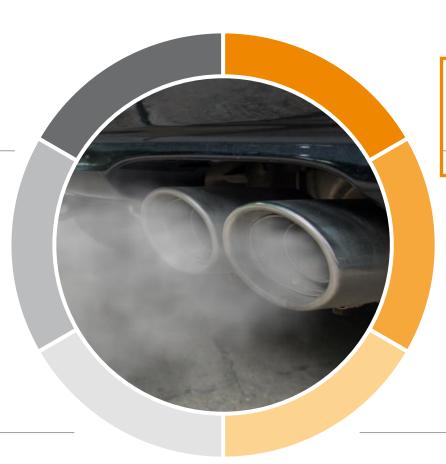
- Pt1000 M222 F0.3
- 4 similar international NTC types
 - Specified for a temperature up to 300 °C
 - From leading NTC manufactures

GOOD DRIFT BEHAVIOR ALLOWS STABLE TEMPERATURE CONTROL

Measuring Point T in °C

EXHAUST GAS MONITORING: HIGH ACCURACY IN HIGH STRESS CONDITIONS


APPLICATION CONDITIONS



Very Wide Temp. Range From -40 °C to +1000 °C.

Rapid Temperature Change Hundreds of degrees per second.

REQUIREMENTS FOR TEMPERATURE MEASUREMENT

Resistance to thermal shock, high temperature exposure, and shock/vibration.

Nexensos

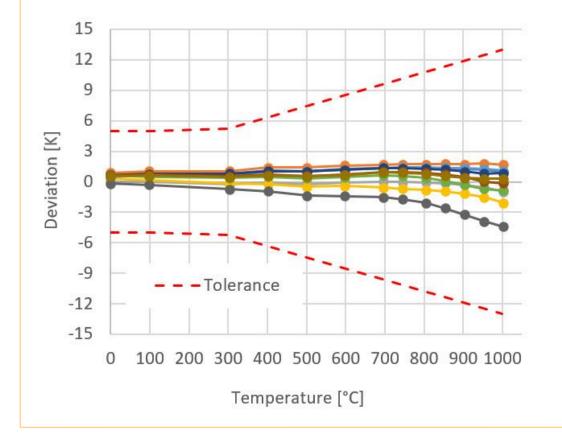
Standardized Output Industry standard-setting Pt200 sensor.

Long Life Reduce costly vehicle downtime and maintenance costs.

EXHAUST GAS TEMPERATURE MONITORING

Very wide operating temperature range

- Exhaust system temperature can increase from ambient to +1000 °C in seconds during startup
- Water splash can reduce temperatures by hundreds of degrees nearly instantaneously


Proven tough design

- Sensor designed to withstand ΔT of over 1000K/sec, under vibration conditions of 55 to 5000 Hz, 100 to 400 ms⁻² acceleration
- Superior manufacturing techniques
- Advanced material science

EXHAUST GAS TEMPERATURE MONITORING

RESULTS OF TEMPERATURE CYCLING TEST FOR HDZ420

Test conditions:

5000 cycles between ambient and 1000 °C, well time 5 min each phase, powered with 5V, pullup resistor 1000 Ω

CHOOSE THE RIGHT TEMPERATURE SENSOR FOR YOUR APPLICATION!

BODY TEMPERATURE MONITORING

E-MOTOR

HEAT-METERING

INDUSTRIAL CLOTHING IRON

EXHAUST GAS TREATMENT

EXPERTS FOR MAXIMUM SENSING.